Flammability Limits
   HOME

TheInfoList



OR:

Mixtures of dispersed combustible materials (such as gaseous or vaporised fuels, and some dusts) and oxygen in the air will burn only if the fuel concentration lies within well-defined lower and upper bounds determined experimentally, referred to as flammability limits or explosive limits. Combustion can range in violence from
deflagration Deflagration (Lat: ''de + flagrare'', "to burn down") is subsonic combustion in which a pre-mixed flame propagates through a mixture of fuel and oxidizer. Deflagrations can only occur in pre-mixed fuels. Most fires found in daily life are diffu ...
through detonation. Limits vary with temperature and pressure, but are normally expressed in terms of volume percentage at 25 °C and atmospheric pressure. These limits are relevant both in producing and optimising explosion or combustion, as in an engine, or to preventing it, as in uncontrolled explosions of build-ups of combustible gas or dust. Attaining the best combustible or explosive mixture of a fuel and air (the stoichiometric proportion) is important in internal combustion engines such as gasoline or diesel engines. The standard reference work is still that elaborated by Michael George Zabetakis, a fire safety engineering specialist, using an apparatus developed by the United States Bureau of Mines.


Violence of combustion

Combustion can vary in degree of violence. A
deflagration Deflagration (Lat: ''de + flagrare'', "to burn down") is subsonic combustion in which a pre-mixed flame propagates through a mixture of fuel and oxidizer. Deflagrations can only occur in pre-mixed fuels. Most fires found in daily life are diffu ...
is a propagation of a combustion zone at a velocity less than the speed of sound in the unreacted medium. A detonation is a propagation of a combustion zone at a velocity greater than the speed of sound in the unreacted medium. An
explosion An explosion is a rapid expansion in volume associated with an extreme outward release of energy, usually with the generation of high temperatures and release of high-pressure gases. Supersonic explosions created by high explosives are known ...
is the bursting or rupture of an enclosure or container due to the development of internal pressure from a deflagration or detonation as defined in NFPA 69.


Limits


Lower flammability limit

Lower flammability limit The lower flammability limit (LFL), usually expressed in volume per cent, is the lower end of the concentration range over which a flammable mixture of gas or vapour in air can be ignited at a given temperature and pressure. The flammability range ...
(LFL): The lowest concentration (percentage) of a gas or a vapor in air capable of producing a flash of fire in the presence of an ignition source (arc, flame, heat). The term is considered by many safety professionals to be the same as the lower explosive level (LEL). At a concentration in air lower than the LFL, gas mixtures are "too lean" to burn. Methane gas has an LFL of 4.4%. If the atmosphere has less than 4.4% methane, an explosion cannot occur even if a source of ignition is present. From the health and safety perspective, the LEL concentration is considered to be Immediately Dangerous to Life or Health (IDLH), where a more stringent exposure limit does not exist for the flammable gas. Percentage reading on combustible air monitors should not be confused with the LFL concentrations.
Explosimeter An explosimeter is a gas detector which is used to measure the amount of combustible gases present in a sample. When a percentage of the lower explosive limit (LEL) of an atmosphere is exceeded, an alarm signal on the instrument is activated. The ...
s designed and calibrated to a specific gas may show the relative concentration of the atmosphere to the LFL—the LFL being 100%. A 5% displayed LFL reading for methane, for example, would be equivalent to 5% multiplied by 4.4%, or approximately 0.22% methane by volume at 20 degrees C. Control of the explosion hazard is usually achieved by sufficient natural or mechanical ventilation, to limit the concentration of flammable gases or vapors to a maximum level of 25% of their ''lower explosive or flammable limit''.


Upper flammability limit

Upper flammability limit (UFL): Highest concentration (percentage) of a gas or a vapor in air capable of producing a flash of fire in the presence of an ignition source (arc, flame, heat). Concentrations higher than UFL or UEL are "too rich" to burn. Operating above the UFL is usually avoided for safety because air leaking in can bring the mixture into combustibility range.


Influence of temperature, pressure and composition

Flammability limits of mixtures of several combustible gases can be calculated using Le Chatelier's mixing rule for combustible volume fractions x_i: : LFL_=\frac and similar for UFL. Temperature, pressure, and the concentration of the oxidizer also influences flammability limits. Higher temperature or pressure, as well as higher concentration of the oxidizer (primarily oxygen in air), results in lower LFL and higher UFL, hence the gas mixture will be easier to explode. Usually atmospheric air supplies the oxygen for combustion, and limits assume the normal concentration of oxygen in air. Oxygen-enriched atmospheres enhance combustion, lowering the LFL and increasing the UFL, and vice versa; an atmosphere devoid of an oxidizer is neither flammable nor explosive for any fuel concentration (except for gases that can energetically decompose even in the absence of an oxidizer, such as
acetylene Acetylene (systematic name: ethyne) is the chemical compound with the formula and structure . It is a hydrocarbon and the simplest alkyne. This colorless gas is widely used as a fuel and a chemical building block. It is unstable in its pure ...
). Significantly increasing the fraction of inert gases in an air mixture, at the expense of oxygen, increases the LFL and decreases the UFL.


Controlling explosive atmospheres


Gas and vapor

Controlling gas and vapor concentrations outside the flammable limits is a major consideration in
occupational safety and health Occupational safety and health (OSH), also commonly referred to as occupational health and safety (OHS), occupational health, or occupational safety, is a multidisciplinary field concerned with the safety, health, and welfare of people at wor ...
. Methods used to control the concentration of a potentially explosive gas or vapor include use of sweep gas, an unreactive gas such as nitrogen or argon to dilute the explosive gas before coming in contact with air. Use of scrubbers or adsorption resins to remove explosive gases before release are also common. Gases can also be maintained safely at concentrations above the UEL, although a breach in the storage container can lead to explosive conditions or intense fires.


Dusts

Dusts also have upper and lower explosion limits, though the upper limits are hard to measure and of little practical importance. Lower flammability limits for many organic materials are in the range of 10–50 g/m³, which is much higher than the limits set for health reasons, as is the case for the LEL of many gases and vapours. Dust clouds of this concentration are hard to see through for more than a short distance, and normally only exist inside process equipment. Flammability limits also depend on the particle size of the dust involved, and are not intrinsic properties of the material. In addition, a concentration above the LEL can be created suddenly from settled dust accumulations, so management by routine monitoring, as is done with gases and vapours, is of no value. The preferred method of managing combustible dust is by preventing accumulations of settled dust through process enclosure, ventilation, and surface cleaning. However, lower flammability limits may be relevant to plant design.


Volatile liquids

Situations caused by evaporation of flammable liquids into the air-filled void volume of a container may be limited by flexible container volume or by using an immiscible fluid to fill the void volume.
Hydraulic tanker A hydraulic tanker is an oil tanker designed to use water as an incompressible fluid for loading and unloading petroleum cargo. Each cargo tank is kept full at all times so oil floating on water will be pressed against the top of the tank. A cargo ...
s use displacement of water when filling a tank with petroleum.


Examples

The flammable/explosive limits of some gases and vapors are given below. Concentrations are given in percent by volume of air. * Class IA liquids with a
flash point The flash point of a material is the "lowest liquid temperature at which, under certain standardized conditions, a liquid gives off vapours in a quantity such as to be capable of forming an ignitable vapour/air mixture". (EN 60079-10-1) The fl ...
less than and
boiling point The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the surrounding envir ...
less than have a NFPA 704 flammability rating of 4 * Class IB liquids with a flash point less than and a boiling point equal to or greater than and class IC liquids with a flash point equal to or greater than , but less than have a NFPA 704 flammability rating of 3 * Class II liquids with a flash point equal to or greater than , but less than and class IIIA liquids with a flash point equal to or greater than , but less than have a NFPA 704 flammability rating of 2 * Class IIIB liquids with a flash point equal to or greater than have a NFPA 704 flammability rating of 1


ASTM E681

In the U.S. the most common method of measuring LFLs and UFLs i
ASTM E681
This standard test is required for HAZMAT Class 2 Gases and for determining
refrigerant A refrigerant is a working fluid used in the heat pump and refrigeration cycle, refrigeration cycle of air conditioning systems and heat pumps where in most cases they undergo a repeated phase transition from a liquid to a gas and back again. Ref ...
flammability classifications. This standard uses visual observations of flame propagation in 5 or 12 L spherical glass vessels to measure the flammability limits. Flammable conditions are defined as those for which a flame propagates outside a 90° cone angle.


See also

* Flammability *
Limiting oxygen concentration The limiting oxygen concentration (LOC), also known as the minimum oxygen concentration (MOC), is defined as the limiting concentration of oxygen below which combustion is not possible, independent of the concentration of fuel. It is expressed ...
*
Minimum ignition energy The minimum ignition energy (MIE) is a safety characteristic in Explosion protection, explosion protection and prevention which determines the ignition capability of fuel-air mixtures, where the fuel may be combustible vapor, gas or dust. It is def ...


References


Further reading

* David R. Lide, Editor-in-Chief; ''CRC Handbook of Chemistry and Physics, 72nd edition''; CRC Press;
Boca Raton Boca Raton ( ; es, Boca Ratón, link=no, ) is a city in Palm Beach County, Florida, United States. It was first incorporated on August 2, 1924, as "Bocaratone," and then incorporated as "Boca Raton" in 1925. The population was 97,422 in the ...
, Florida; 1991; {{ISBN, 0-8493-0565-9 Combustion Explosion protection Fire Natural gas safety